Structural basis for BIRC6 to balance apoptosis and autophagy

Author:

Liu Shuo-Shuo,Jiang Tian-Xia,Bu Fan,Zhao Ji-Lan,Wang Guang-Fei,Yang Guo-Heng,Kong Jie-Yan,Qie Yun-Fan,Wen Pei,Fan Li-Bin,Li Ning-Ning,Gao NingORCID,Qiu Xiao-Bo

Abstract

ABSTRACTCaspase-9 is the initiator caspase for the intrinsic apoptotic cell death pathway, and is critical to the activation of effector caspases during apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor of Apoptosis Protein (IAP) BIRC6/BRUCE/Apollon not only inhibits apoptosis, but also promotes ubiquitination of the key autophagic protein LC3 and inhibits autophagy. Here we show that BIRC6 forms an anti-parallel U-shaped dimer in a 3.6-Å cryo-EM structure with multiple previously unannotated domains, including a ubiquitin-like domain, and discover that the mitochondria-derived pro-apoptotic factor Smac/DIABLO binds BIRC6 by interacting with one BIR domain, two carbohydrate-binding modules and two helices in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not caspase 9, for binding BIRC6. BIRC6 strongly inhibits cellular activity of caspase 9, but weakly suppresses that of caspase 3. Meanwhile, BIRC6 binds LC3 through an LC3-interacting region, probably following dimer disruption of this BIRC6 region. Deficiency in LC3 ubiquitination promotes autophagy and autophagic degradation of BIRC6, and inhibits apoptosis. Moreover, induction of autophagy promotes autophagic degradation of both procaspase-9 and active caspase-9, but not of effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. The expanding role of mitochondria in apoptosis;Genes & development,2001

2. Autophagy in major human diseases;EMBO J,2021

3. Self-consumption: the interplay of autophagy and apoptosis

4. Caspases: Enemies Within

5. Biochemical Pathways of Caspase Activation During Apoptosis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3