Exploring adaptation routes to low temperatures in theSaccharomycesgenus

Author:

Pinto JavierORCID,Balarezo-Cisneros Laura NataliaORCID,Delneri DanielaORCID

Abstract

AbstractThe identification of traits that affect adaptation of microbial species to external abiotic factors, such as temperature, is key for our understanding of how biodiversity originates and can be maintained in a constantly changing environment. TheSaccharomycesgenus, which includes eight species with different thermotolerant profiles, represent an ideal experimental platform to study the impact of adaptive alleles in different genetic backgrounds. Previous studies identified a group of genes important for maintenance of growth at lower temperatures. Here, we carried out a genus-wide functional analysis in all eightSaccharomycesspecies for six candidate genes. We showed that the cold tolerance trait ofS. kudriavzeviiandS. eubayanusis likely to be evolved from different routes, involving genes important for the conservation of redox-balance, and for the long-chain fatty acid metabolism, respectively. For several loci, temperature- and species-dependent epistasis was detected, underlying the plasticity and complexity of the genetic interactions. The natural isolates ofS. kudriavzevii, S. jureiandS. mikataehad a significantly higher expression of the genes involved in the redox balance compared toS. cerevisiae, raising the question of what proportion of the trait is accounted for solely due to transcriptional strength. To tease apart the role of gene expression from that of allelic variation, for two genes we independently replaced in four yeast species either the promoters or the alleles with those derived fromS. kudriavzevii. Our data consistently showed a significant fitness improvement at cold temperatures in the strains carrying theS. kudriavzeviipromoter, while growth was lower upon allele swapping. These results suggest that transcriptional strength plays a bigger role in growth maintenance at cold over the allele type and supports a model of adaptation centred on stochastic tuning of the expression network.Author summaryThe decline in biodiversity due to environmental changes influences the stability of ecosystems by altering the geographic distribution of several microbial and fungal species. Temperature is one of the leading factors that drive adaptation and different organisms share the same habitat because of their different thermal profiles. It is therefore important to study the genes that affect the fitness of microorganisms at different temperatures in order to understand both how biodiversity originated and how can be maintained. TheSaccharomycesgenus, which includes species with different thermotolerant profiles, represent an ideal experimental platform to investigate the impact of adaptive alleles in response to temperature changes. Here, we carried out a functional analysis for putative cold-tolerant genes and showed that this trait is likely to be evolved from different routes in different species, involving the conservation of redox-balance and alteration of membrane fluidity. Furthermore, for several species, genetic interactions display fitness tradeoffs in different environments. Finally, by unravelling the interplay between gene expression, allele variation, genetic background and environment, this study shed light on the intricate nature of transcriptional regulation and its pivotal role in facilitating cold adaptation inSaccharomycesspecies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3