Intestinal bacterial indicator phylotypes associate with impaired DNA double-stranded break sensors but augmented skeletal bone micro-structure

Author:

Maier Irene1ORCID,Liu Jared1,Ruegger Paul M2,Deutschmann Julia3,Patsch Janina M4,Helbich Thomas H4,Borneman James2,Schiestl Robert H15

Affiliation:

1. Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA

2. Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA

3. Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria

4. Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel,Vienna, Austria

5. Department of Pathology, University of California, Los Angeles, CA, USA

Abstract

Abstract Intestinal microbiota are considered a sensor for molecular pathways, which orchestrate energy balance, immune responses, and cell regeneration. We previously reported that microbiota restriction promoted higher levels of systemic radiation-induced genotoxicity, proliferative lymphocyte activation, and apoptotic polarization of metabolic pathways. Restricted intestinal microbiota (RM) that harbors increased abundance of Lactobacillus johnsonii (LBJ) has been investigated for bacterial communities that correlated radiation-induced genotoxicity. Indicator phylotypes were more abundant in RM mice and increased in prevalence after whole body irradiation in conventional microbiota (CM) mice, while none of the same ten most abundant phylotypes were different in abundance between CM mice before and after heavy ion irradiation. Muribaculum intestinale was detected highest in female small intestines in RM mice, which were lacking Ureaplasma felinum compared with males, and thus these bacteria could be contributing to the differential amounts of radiation-induced systemic genotoxicity between the CM and RM groups. Helicobacter rodentium and M.intestinale were found in colons in the radiation-resistant CM phenotype. While the expression of interferon-γ was elevated in the small intestine, and lower in blood in CM mice, high-linear energy transfer radiation reduced transforming growth factor-β with peripheral interleukin (IL)-17 in RM mice, particularly in females. We found that female RM mice showed improved micro-architectural bone structure and anti-inflammatory radiation response compared with CM mice at a delayed phase 6 weeks postexposure to particle radiation. However, microbiota restriction reduced inflammatory markers of tumor necrosis factor in marrow, when IL-17 was reduced by intraperitoneal injection of IL-17 neutralizing antibody.

Funder

NASA

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3