MALAT1 regulates network of microRNA-15a/16–VEGFA to promote tumorigenesis and angiogenesis in multiple myeloma

Author:

Yan Han1,Gao Su23,Xu Aoshuang1,Zuo Liping1,Zhang Jiasi1,Zhao Yuhong1,Cheng Qianwen1,Yin Xuejiao1,Sun Chunyan14ORCID,Hu Yu14

Affiliation:

1. Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China

2. Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China

3. Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , China

4. Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology , Wuhan , China

Abstract

Abstract MALAT1 is one of the most hopeful members implicated in angiogenesis in a variety of non-malignant diseases. In multiple myeloma (MM), MALAT1 is recognized as the most highly expressed long non-coding RNA. However, the functional roles of MALAT1 in angiogenesis and the responsible mechanisms have not yet been explored. Herein, we discovered a novel regulatory network dependent on MALAT1 in relation to MM tumorigenesis and angiogenesis. We observed that MALAT1 was upregulated in MM and significantly associated with poor overall survival. MALAT1 knockdown suppressed MM cell proliferation and promoted apoptosis, while restricting endothelial cells angiogenesis. Moreover, MALAT1 directly targeted microRNA-15a/16, and microRNA-15a/16 suppression partly reverted the effects of MALAT1 deletion on MM cells in vitro as well as tumor growth and angiogenesis in vivo. In addition, further study indicated that MALAT1 functioned as a competing endogenous RNA for microRNA-15a/16 to regulate vascular endothelial growth factor A (VEGFA) expression. Our results suggest that MALAT1 plays an important role in the regulatory axis of microRNA-15a/16–VEGFA to promote tumorigenicity and angiogenesis in MM. Consequently, MALAT1 could serve as a novel promising biomarker and a potential antiangiogenic target against MM.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Collaborative Innovation Center of Hematology of China

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3