The single-sample network module biomarkers (sNMB) method reveals the pre-deterioration stage of disease progression

Author:

Zhong Jiayuan12,Liu Huisheng3,Chen Pei24

Affiliation:

1. School of Mathematics and Big Data, Foshan University , Foshan 528000 , China

2. School of Mathematics, South China University of Technology , Guangzhou 510640 , China

3. School of Life Sciences and Technology, Tongji University , Shanghai 200092 , China

4. Pazhou Lab , Guangzhou 510330 , China

Abstract

ABSTRACT The progression of complex diseases generally involves a pre-deterioration stage that occurs during the transition from a healthy state to disease deterioration, at which a drastic and qualitative shift occurs. The development of an effective approach is urgently needed to identify such a pre-deterioration stage or critical state just before disease deterioration, which allows the timely implementation of appropriate measures to prevent a catastrophic transition. However, identifying the pre-deterioration stage is a challenging task in clinical medicine, especially when only a single sample is available for most patients, which is responsible for the failure of most statistical methods. In this study, a novel computational method, called single-sample network module biomarkers (sNMB), is presented to predict the pre-deterioration stage or critical point using only a single sample. Specifically, the proposed single-sample index effectively quantifies the disturbance caused by a single sample against a group of given reference samples. Our method successfully detected the early warning signal of the critical transitions when applied to both a numerical simulation and four real datasets, including acute lung injury, stomach adenocarcinoma, esophageal carcinoma, and rectum adenocarcinoma. In addition, it provides signaling biomarkers for further practical application, which helps to discover prognostic indicators and reveal the underlying molecular mechanisms of disease progression.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3