SPNE: sample-perturbed network entropy for revealing critical states of complex biological systems

Author:

Zhong Jiayuan12ORCID,Ding Dandan3,Liu Juntan2,Liu Rui24ORCID,Chen Pei2

Affiliation:

1. School of Mathematics and Big Data, Foshan University , Foshan 528000 , China

2. School of Mathematics, South China University of technology , Guangzhou 510640 , China

3. Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou 510095 , China

4. Pazhou Lab , Guangzhou 510330 , China

Abstract

AbstractComplex biological systems do not always develop smoothly but occasionally undergo a sharp transition; i.e. there exists a critical transition or tipping point at which a drastic qualitative shift occurs. Hunting for such a critical transition is important to prevent or delay the occurrence of catastrophic consequences, such as disease deterioration. However, the identification of the critical state for complex biological systems is still a challenging problem when using high-dimensional small sample data, especially where only a certain sample is available, which often leads to the failure of most traditional statistical approaches. In this study, a novel quantitative method, sample-perturbed network entropy (SPNE), is developed based on the sample-perturbed directed network to reveal the critical state of complex biological systems at the single-sample level. Specifically, the SPNE approach effectively quantifies the perturbation effect caused by a specific sample on the directed network in terms of network entropy and thus captures the criticality of biological systems. This model-free method was applied to both bulk and single-cell expression data. Our approach was validated by successfully detecting the early warning signals of the critical states for six real datasets, including four tumor datasets from The Cancer Genome Atlas (TCGA) and two single-cell datasets of cell differentiation. In addition, the functional analyses of signaling biomarkers demonstrated the effectiveness of the analytical and computational results.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Human Digital Twin

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3