Novel insight into the etiology of ischemic stroke gained by integrative multiome-wide association study

Author:

Jung Junghyun12ORCID,Lu Zeyun34ORCID,de Smith Adam12,Mancuso Nicholas12345ORCID

Affiliation:

1. Center for Genetic Epidemiology , Department of Population and Public Health Sciences, Keck School of Medicine, , 1450 Biggy Street, Los Angeles, CA 90033 , United States

2. University of Southern California , Department of Population and Public Health Sciences, Keck School of Medicine, , 1450 Biggy Street, Los Angeles, CA 90033 , United States

3. Biostatistics Division , Department of Population and Public Health Sciences, Keck School of Medicine, , 2001 North Soto Street, Los Angeles, CA 90033 , United States

4. University of Southern California , Department of Population and Public Health Sciences, Keck School of Medicine, , 2001 North Soto Street, Los Angeles, CA 90033 , United States

5. Department of Quantitative and Computational Biology, University of Southern California , 1050 Childs Way, Los Angeles, CA 90089 , United States

Abstract

Abstract Stroke, characterized by sudden neurological deficits, is the second leading cause of death worldwide. Although genome-wide association studies (GWAS) have successfully identified many genomic regions associated with ischemic stroke (IS), the genes underlying risk and their regulatory mechanisms remain elusive. Here, we integrate a large-scale GWAS (N = 1 296 908) for IS together with molecular QTLs data, including mRNA, splicing, enhancer RNA (eRNA), and protein expression data from up to 50 tissues (total N = 11 588). We identify 136 genes/eRNA/proteins associated with IS risk across 60 independent genomic regions and find IS risk is most enriched for eQTLs in arterial and brain-related tissues. Focusing on IS-relevant tissues, we prioritize 9 genes/proteins using probabilistic fine-mapping TWAS analyses. In addition, we discover that blood cell traits, particularly reticulocyte cells, have shared genetic contributions with IS using TWAS-based pheWAS and genetic correlation analysis. Lastly, we integrate our findings with a large-scale pharmacological database and identify a secondary bile acid, deoxycholic acid, as a potential therapeutic component. Our work highlights IS risk genes/splicing-sites/enhancer activity/proteins with their phenotypic consequences using relevant tissues as well as identify potential therapeutic candidates for IS.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiomic approaches to stroke: the beginning of a journey;Nature Reviews Neurology;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3