Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection

Author:

Li Ming1,Liu Jianheng1,Cui Xiang1,Sun Guofei1,Hu Jianwei1,Xu Sijia2,Yang Fei2,Zhang Licheng1,Wang Xiumei3,Tang Peifu1

Affiliation:

1. Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, China

2. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

3. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

Abstract The treatment of bone defect after bone tumor resection is a great challenge for orthopedic surgeons. It should consider that not only to inhibit tumor growth and recurrence, but also to repair the defect and preserve the limb function. Hence, it is necessary to find an ideal functional biomaterial that can repair bone defects and inactivate tumor. Magnetic nanoparticles (MNPs) have its unique advantages to achieve targeted hyperthermia to avoid damage to surrounding normal tissues and promote osteoblastic activity and bone formation. Based on the previous stage, we successfully prepared hydroxyapatite (HAP) composite poly(lactic-co-glycolic acid) (PLGA) scaffolds and verified its good osteogenic properties, in this study, we produced an HAP composite PLGA scaffolds modified with MNPs. The composite scaffold showed appropriate porosity and mechanical characteristics, while MNPs possessed excellent magnetic and thermal properties. The cytological assay indicated that the MNPs have antitumor ability and the composite scaffold possessed good biocompatibility. In vivo bone defect repair experiment revealed that the composite scaffold had good osteogenic capacity. Hence, we could demonstrate that the composite scaffolds have a good effect in bone repair, which could provide a potential approach for repairing bone defect after bone tumor excision.

Funder

National Key R&D Program of China

Scientific Research Project of Capital Health Development

The National Natural Science Foundation of China

Subsidiary of PLA Major Project

PLA General Hospital

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3