Magnetically‐actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization

Author:

Popescu Roxana Cristina,Calin Bogdan Stefanita,Tanasa Eugenia,Vasile Eugeniu,Mihailescu Mona,Paun Irina Alexandra

Abstract

The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano‐medicine. In this study, we report on 3D superparamagnetic microcage‐like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage‐like structures were fabricated using Laser Direct Writing via Two‐Photon Polymerization (LDW via TPP) of IP‐L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage‐like structures. Scanning Electron Microscopy coupled with Energy Dispersive X‐Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG‐63 osteoblast‐like cells. Comparative studies were made on microcage‐like structures made of IP‐L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell‐seeded structures made by IP‐L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP‐L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage‐like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast‐like cells, showing a significant potential for bone tissue engineering applications.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3