Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms

Author:

Matsulevits Anna12,Coupé Pierrick3,Nguyen Huy-Dung3,Talozzi Lia4ORCID,Foulon Chris5ORCID,Nachev Parashkev5ORCID,Corbetta Maurizio678,Tourdias Thomas910ORCID,Thiebaut de Schotten Michel12ORCID

Affiliation:

1. Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives 5293, Centre National de la Recherche Scientifique (CNRS), University of Bordeaux , 33076 Bordeaux ,

2. Brain Connectivity and Behaviour Laboratory, Sorbonne Universities , 75006 Paris ,

3. University Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux Institute Polytechnique de Bordeaux (INP), Laboratoire Bordelais de Recherche en Informatique (LaBRI), CNRS 5800 , 33405 Talence ,

4. Department of Neurology and Neurological Sciences, Stanford University School of Medicine , Stanford, CA 94305 ,

5. Institute of Neurology, University College London , WC1N 3AZ London ,

6. Clinica Neurologica, Department of Neuroscience, University of Padova , 32122 Padova ,

7. Padova Neuroscience Center (PNC), University of Padova , 32122 Padova ,

8. Venetian Institute of Molecular Medicine (VIMM) , 32122 Padova ,

9. Centre Hospitalier Universitaire (CHU) de Bordeaux, Neuroimagerie Diagnostique et Thérapeutique , 33076 Bordeaux ,

10. University Bordeaux, National Institute of Health and Medical Research (INSERM), Neurocentre Magendie, U1215 , 33076 Bordeaux ,

Abstract

Abstract This study investigates the efficacy of deep-learning models in expediting the generation of disconnectomes for individualized prediction of neuropsychological outcomes one year after stroke. Utilising a 3D U-Net network, we trained a model on a dataset of N = 1333 synthetic lesions and corresponding disconnectomes, subsequently applying it to N = 1333 real stroke lesions. The model-generated disconnection patterns were then projected into a two-dimensional ‘morphospace’ via uniform manifold approximation and projection for dimension reduction dimensionality reduction. We correlated the positioning within this morphospace with one-year neuropsychological scores across 86 metrics in a novel cohort of 119 stroke patients, employing multiple regression models and validating the findings in an out-of-sample group of 20 patients. Our results demonstrate that the 3D U-Net model captures the critical information of conventional disconnectomes with a notable increase in efficiency, generating deep-disconnectomes 720 times faster than current state-of-the-art software. The predictive accuracy of neuropsychological outcomes by deep-disconnectomes averaged 85.2% (R2 = 0.208), which significantly surpassed the conventional disconnectome approach (P = 0.009). These findings mark a substantial advancement in the production of disconnectome maps via deep learning, suggesting that this method could greatly enhance the prognostic assessment and clinical management of stroke survivors by incorporating disconnection patterns as a predictive tool.

Funder

European Union’s Horizon 2020 research and innovation programme

European Research Council

University of Bordeaux’s IdEx ‘Investments for the Future’ RRI program

IMPACT

IHU

Precision & Global Vascular Brain Health Institute—VBHI

France 2030 program

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3