Benchmarking machine learning models in lesion-symptom mapping for predicting language outcomes in stroke survivors

Author:

Tilwani Deepa,O'Reilly Christian,Riccardi Nicholas,Shalin Valerie L.,den Ouden Dirk-Bart,Fridriksson Julius,Shinkareva Svetlana V.,Sheth Amit P.,Desai Rutvik H.

Abstract

Several decades of research have investigated the neural connections between stroke-induced brain damage and language difficulties. Typically, lesion-symptom mapping (LSM) studies that address this connection have relied on mass univariate statistics, which do not account for multidimensional relationships between variables. Machine learning (ML) techniques, which can capture these intricate connections, offer a promising complement to LSM methods. To test this promise, we benchmarked ML models on structural and functional MRI to predict aphasia severity (N = 238) and naming impairment (N = 191) for a cohort of chronic-stage stroke survivors. We used nested cross-validation to examine performance along three dimensions: (1) parcellation schemes (JHU, AAL, BRO, and AICHA atlases), (2) neuroimaging modalities (resting-state functional connectivity, structural connectivity, mean diffusivity, fractional anisotropy, and lesion location) and (3) ML methods (Random Forest, Support Vector Regression, Decision Tree, K Nearest Neighbors, and Gradient Boosting). The best results were obtained by combining the JHU atlas, lesion location, and the Random Forest model. This combination yielded moderate to high correlations with the two different behavioral scores. Key regions identified included several perisylvian areas and pathways within the language network. This work complements existing LSM methods with new tools for improving the prediction of language outcomes in stroke survivors.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3