Downregulation of HDAC8 expression decreases CD163 levels and promotes the apoptosis of macrophages by activating the ERK signaling pathway in recurrent spontaneous miscarriage

Author:

Yao Yongli1,Hao Fan1,Tang Lin-Chen1,Xu Xiang-Hong1ORCID,Jin Liping1ORCID

Affiliation:

1. Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China

Abstract

Abstract Recurrent spontaneous miscarriage (RSM) is a systemic disorder that has been defined as two or more pregnancies lost before the 20th week of gestation. Although the impaired function of macrophages at the maternal–fetal interface has been reported to be associated with RSM, the underlying mechanisms have not been fully elucidated. Here, we revealed that HDAC8 plays a critical role in RSM. Our results show that the mRNA and protein expression of HDAC8 was decreased in decidual macrophages from RSM patients. Moreover, the knockdown of HDAC8 resulted in a significant decrease in CD163 expression and an increase in apoptosis in dTHP-1 macrophages. Mechanistically, the ERK signaling pathway was activated in HDAC8-knockdown macrophages. When HDAC8-knockdown cells were pretreated with the ERK inhibitor U0126, expression levels of CD163, activated caspases 3, 7 and 9, and the apoptosis rate, were rescued. Taken together, our current results suggest that HDAC8 plays an important role in macrophage activation and apoptosis and may contribute to maintaining normal pregnancy by increasing the expression of M2 marker genes and inhibiting the apoptosis of macrophages at the maternal–fetal interface.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanghai Municipal Medical and Health Discipline Construction Projects

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynaecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3