The N6-Methyladenosine Regulator ALKBH5 Mediated Stromal Cell–Macrophage Interaction via VEGF Signaling to Promote Recurrent Spontaneous Abortion: A Bioinformatic and In Vitro Study

Author:

Zhao Yongbo,Sun Jiani,Jin Liping

Abstract

Successful conception requires the synchrony of multiple systems and organs. Dysregulation of stromal cell–immune cell interactions has been proposed to be associated with recurrent spontaneous abortion. However, the mechanism of this regulation has not been well elucidated. N6-methyladenosine is one of the most common RNA modifications, and is involved in many pathological processes. Our group has demonstrated that abnormal patterns of m6A modification inhibit trophoblast invasion and contribute to adverse pregnancy outcomes. The association between m6A regulators and stromal cell–immune cell interactions is unclear. We obtained RNA-seq profiles from a GEO dataset and identified differentially expressed m6A regulators between healthy controls and patients with a recurrent spontaneous abortion history. ROC curves, functional enrichment and subclassification analysis were applied to elucidate the role of m6A regulators in pregnancy. We verified the expression of m6A regulators and constructed an overexpression cell line in a coculture system to reveal ALKBH5 function in stromal cell–macrophage interactions. We identified 11 differentially expressed m6A regulators between healthy controls and patients with a recurrent spontaneous abortion history. Then, we identified the correlation between “eraser” genes and “writer” genes. We tested the predictive abilities of the 11 m6A regulators based on another dataset and verified their expression in primary human endometrial stromal cells. We then subclassified three distinct patterns using the 11 genes and visualized genes related to immune infiltration and macrophage function in each cluster. ALKBH5 was proven to be correlated with recurrent spontaneous abortion. To verify the role of ALKBH5 in RSA, we constructed an ALKBH5-overexpression cell line. Finally, we cocultured the overexpression cell line with THP-1 cells. A decrease in M2 differentiation was observed, and this bias could be attributed to the hyposecretion of VEGF in stromal cells. N6-methyladenosine regulators play a pivotal role in stromal cell–immune cell interactions at the maternal–fetal interface. Overexpression of the m6A “eraser” gene ALKBH5 in stromal cells resulted in the hyposecretion of VEGF. Dysregulation of VEGF might impair macrophage recruitment and M2 differentiation, which could be the potential cause of recurrent spontaneous abortion.

Funder

National Natural Science Foundation of China

Shanghai Municipal Health Commission

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3