Characterization of G-CSF receptor expression in medulloblastoma

Author:

Paul Megan Rose12,Huo Yuchen1,Liu Andrea1,Lesperance Jacqueline1,Garancher Alexandra3,Wechsler-Reya Robert J3,Zage Peter E12

Affiliation:

1. Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA

2. Peckham Center for Cancer and Blood Disorders, Rady Children’s Hospital-San Diego, San Diego, California, USA

3. Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA

Abstract

Abstract Background Identifying mechanisms of medulloblastoma recurrence is a key to improving patient survival, and targeting treatment-resistant subpopulations within tumors could reduce disease recurrence. Expression of the granulocyte colony-stimulating factor receptor (G-CSF-R, CD114) is a potential marker of cancer stem cells, and therefore we hypothesized that a subpopulation of medulloblastoma cells would also express CD114 and would demonstrate chemoresistance and responsiveness to G-CSF. Methods Prevalence of CD114-positive (CD114+) cells in medulloblastoma cell lines, patient-derived xenograft (PDX) tumors, and primary patient tumor samples were assessed by flow cytometry. Growth rates, chemoresistance, and responses to G-CSF of CD114+ and CD114-negative (CD114−) cells were characterized in vitro using continuous live cell imaging and flow cytometry. Gene expression profiles were compared between CD114+ and CD114− medulloblastoma cells using quantitative RT-PCR. Results CD114+ cells were identifiable in medulloblastoma cell lines, PDX tumors, and primary patient tumors and have slower growth rates than CD114− or mixed populations. G-CSF accelerates the growth of CD114+ cells, and CD114+ cells are more chemoresistant. The CD114+ population is enriched when G-CSF treatment follows chemotherapy. The CD114+ population also has higher expression of the CSF3R, NRP-1, TWIST1, and MYCN genes. Conclusions Our data demonstrate that a subpopulation of CD114+ medulloblastoma cells exists in cell lines and tumors, which may evade traditional chemotherapy and respond to exogenous G-CSF. These properties invite further investigation into the role of G-CSF in medulloblastoma therapy and methods to specifically target these cells.

Funder

UC San Diego Altman Clinical and Translational Research Institute TL1 Post-Doctoral Fellowship

Ruth L. Kirschstein National Research Service Award Postdoctoral Training Program in Pediatric Clinical Pharmacology

Padres Pedal the Cause Translational Cancer Research Award

University of California San Diego Pediatrics Department Pilot Grant

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3