A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
-
Published:2023-07-14
Issue:13
Volume:23
Page:7741-7765
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Schmedding Ryan, Zuend AndreasORCID
Abstract
Abstract. Atmospheric aerosol particles and their interactions with clouds are among the largest sources of uncertainty in global climate modeling. Aerosol particles in the ultrafine size range with diameters less than 100 nm have very high surface-area-to-volume ratios, with a substantial fraction of molecules occupying the air–droplet interface. The partitioning of surface-active species between the interior bulk of a droplet and the interface with the surrounding air plays a large role in the physicochemical properties of a particle and in the activation of ultrafine particles, especially those of less than 50 nm diameter, into cloud droplets. In this work, a novel and thermodynamically rigorous treatment of bulk–surface equilibrium partitioning is developed through the use of a framework based on the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model in combination with a finite-depth Guggenheim interface region on spherical, finite-volume droplets. We outline our numerical implementation of the resulting modified Butler equation, including accounting for challenging extreme cases when certain compounds have very limited solubility in either the surface or the bulk phase. This model, which uses a single, physically constrained interface thickness parameter, is capable of predicting the size-dependent surface tension of complex multicomponent solutions containing organic and inorganic species. We explore the impacts of coupled surface tension changes and changes in bulk–surface partitioning coefficients for aerosol particles ranging in diameters from several micrometers to as small as 10 nm and across atmospherically relevant relative humidity ranges. The treatment of bulk–surface equilibrium leads to deviations from classical cloud droplet activation behavior as modeled by simplified treatments of the Köhler equation that do not account for bulk–surface partitioning. The treatments for bulk–surface partitioning laid out in this work, when applied to the Köhler equation, are in agreement with measured critical supersaturations of a range of different systems. However, we also find that challenges remain in accurately modeling the growth behavior of certain systems containing small dicarboxylic acids, especially in a predictive manner. Furthermore, it was determined that the thickness of the interfacial phase is a sensitive parameter in this treatment; however, constraining it to a meaningful range allows for predictive modeling of aerosol particle activation into cloud droplets, including cases with consideration of co-condensation of semivolatile organics.
Funder
Environment and Climate Change Canada Fonds de recherche du Québec – Nature et technologies Mitacs Natural Sciences and Engineering Research Council of Canada
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference93 articles.
1. Abrams, D. S. and Prausnitz, J. M.: Statistical thermodynamics of liquid
mixtures: A new expression for the excess Gibbs energy of partly or
completely miscible systems, AIChE Journal, 21, 116–128,
https://doi.org/10.1002/aic.690210115, 1975. a 2. Aston, M. S. and Herrington, T. M.: The effect of added electrolyte on surface
pressure/area per molecule isotherms, J. Colloid Interf.
Sci., 141, 50–59, 1991. a, b, c 3. Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parri<span id="page7762"/>s,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne,
J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate
Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a 4. Binyaminov, H., Abdullah, F., Zargarzadeh, L., and Elliott, J. A. W.:
Thermodynamic Investigation of Droplet–Droplet and Bubble–Droplet
Equilibrium in an Immiscible Medium, J. Phys. Chem. B,
125, 8636–8651, https://doi.org/10.1021/acs.jpcb.1c02877, 2021. a 5. Booth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.: Surface
tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions, Phys. Chem. Chem.
Phys., 11, 8021–8028, https://doi.org/10.1039/B906849J, 2009. a, b, c
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|