Hygroscopic behavior and aerosol chemistry of atmospheric particles containing organic acids and inorganic salts

Author:

Tan Fang,Zhang Hongbin,Xia KaihuiORCID,Jing BoORCID,Li Xiaohong,Tong ShengruiORCID,Ge MaofaORCID

Abstract

AbstractAerosol hygroscopic behavior plays a central role in determining climate effects and environmental influence of atmospheric particulates. Water-soluble organic acids (WSOAs) constitute a significant fraction of organic aerosols. These organic acids have a complex impact on aerosol hygroscopicity due to their physical and chemical interactions with atmospheric inorganic salts. The mixing of WSOAs with inorganic salts exerts a multiple influence on the hygroscopic growth and phase behaviors of aerosol particles, largely depending on the composition ratio, acid properties, particle size and interactions between particle components. The WSOAs play a critical role in determining water uptake characteristics of aerosol particles, especially in the low and moderate RH ranges. The previous studies reveal the occurrence of aerosol chemistry related to chloride/nitrate/ammonium depletions in aerosol droplets containing WSOAs and inorganic salts. The potential influence of WSOAs on the atmospheric recycling of HCl/HNO3/NH3 due to the chloride/nitrate/ammonium depletion may contribute to the atmospheric budget of reactive gases. A fundamental understanding for the hygroscopic behavior and aerosol chemistry of inorganic–WSOA systems is essential for the accurate parameterization of aerosol behaviors in atmospheric models. However, there is still lack of a comprehensive understanding of the hygroscopicity and related aerosol chemistry of internally mixed inorganic–WSOA systems. The present review comprehensively summarizes the impacts of WSOAs on hygroscopicity and phase changes of atmospherically relevant inorganic salts in aerosol particles especially under subsaturated conditions, and overviews the recent advances on aerosol chemistry related to the hygroscopic process for the internally mixed inorganic–WSOA aerosols.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3