Coevolution of black hole accretion and star formation in galaxies up to z = 3.5

Author:

Carraro R.ORCID,Rodighiero G.ORCID,Cassata P.ORCID,Brusa M.,Shankar F.,Baronchelli I.ORCID,Daddi E.ORCID,Delvecchio I.ORCID,Franceschini A.ORCID,Griffiths R.,Gruppioni C.ORCID,López-Navas E.,Mancini C.,Marchesi S.,Negrello M.,Puglisi A.,Sani E.ORCID,Suh H.ORCID

Abstract

Aims. We study the coevolution between the black hole accretion rate (BHAR) and the star formation rate (SFR) in different phases of galaxy life: main-sequence star-forming galaxies, quiescent galaxies, and starburst galaxies at different cosmic epochs. Methods. We exploited the unique combination of depth and area in the COSMOS field and took advantage of the X-ray data from the Chandra COSMOS-Legacy survey and the extensive multiwavelength ancillary data presented in the COSMOS2015 catalog, including in particular the UVista Ultra-deep observations. These large datasets allowed us to perform an X-ray stacking analysis and combine it with detected sources in a broad redshift interval (0.1 <  z <  3.5) with unprecedented statistics for normal star-forming, quiescent, and starburst galaxies. The X-ray luminosity was used to predict the black holeAR, and a similar stacking analysis on far-infrared Herschel maps was used to measure the corresponding obscured SFR for statistical samples of sources in different redshifts and stellar mass bins. Results. We focus on the evolution of the average SFR-stellar mass (M*) relation and compare it with the BHAR-M* relation. This extends previous works that pointed toward the existence of almost linear correlations in both cases. We find that the ratio between BHAR and SFR does not evolve with redshift, although it depends on stellar mass. For the star-forming populations, this dependence on M* has a logarithmic slope of ∼0.6 and for the starburst sample, the slope is ∼0.4. These slopes are both at odds with quiescent sources, where the dependence remains constant (log(BHAR/SFR) ∼ −3.4). By studying the specific BHAR and specific SFR, we find signs of downsizing for M* and black hole mass (MBH) in galaxies in all evolutionary phases. The increase in black hole mass-doubling timescale was particularly fast for quiescents, whose super-massive black holes grew at very early times, while accretion in star-forming and starburst galaxies continued until more recent times. Conclusions. Our results support the idea that the same physical processes feed and sustain star formation and black hole accretion in star-forming galaxies while the starburst phase plays a lesser role in driving the growth of the supermassive black holes, especially at high redshift. Our integrated estimates of the M* − MBH relation at all redshifts are consistent with independent determinations of the local M* − MBH relation for samples of active galactic nuclei. This adds key evidence that the evolution in the BHAR/SFR is weak and its normalization is relatively lower than that of local dynamical M* − MBH relations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3