X-ray stacking reveals average SMBH accretion properties of star-forming galaxies and their cosmic evolution over 4 ≲ z ≲ 7

Author:

Matsui Suin1ORCID,Shimasaku Kazuhiro12ORCID,Ito Kei1ORCID,Ando Makoto1ORCID,Tanaka Takumi S134ORCID

Affiliation:

1. Department of Astronomy, Graduate School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan

2. Research Center for the Early Universe, Graduate School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan

3. Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo , Kashiwa, Chiba 277-8583 , Japan

4. Center for Data-Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of Tokyo , Kashiwa, Chiba 277-8583 , Japan

Abstract

ABSTRACT With an X-ray stacking analysis of $\simeq 12\, 000$ Lyman-break galaxies (LBGs) using the Chandra Legacy Survey image, we investigate average supermassive black hole (SMBH) accretion properties of star-forming galaxies (SFGs) at 4 ≲ z ≲ 7. Although no X-ray signal is detected in any stacked image, we obtain strong 3σ upper limits for the average black hole accretion rate (BHAR) as a function of star formation rate (SFR). At z ∼ 4 (5) where the stacked image is deeper, the 3σ BHAR upper limits per SFR are ∼1.5 (1.0) dex lower than the local black hole-to-stellar mass ratio, indicating that the SMBHs of SFGs in the inactive (BHAR $\lesssim 1 \, \mathrm{M}_\odot$ yr−1) phase are growing much more slowly than expected from simultaneous evolution. We obtain a similar result for BHAR per dark halo accretion rate. QSOs from the literature are found to have ∼1 dex higher SFRs and ≳ 2 dex higher BHARs than LBGs with the same dark halo mass. We also make a similar comparison for dusty starburst galaxies and quiescent galaxies from the literature. A duty-cycle corrected analysis shows that for a given dark halo, the SMBH mass increase in the QSO phase dominates over that in the much longer inactive phase. Finally, a comparison with the TNG300, TNG100, SIMBA100, and EAGLE100 simulations finds that they overshoot our BHAR upper limits by ≲ 1.5 dex, possibly implying that simulated SMBHs are too massive.

Funder

JSPS

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3