Affiliation:
1. Dep. of Geosciences and Natural Resource Management (DGG) Univ. of Copenhagen Øster Voldgade 10 DK‐1350 Copenhagen Denmark
2. Geological Survey of Denmark and Greenland (GEUS) Øster Voldgade 10 DK‐1350 Copenhagen Denmark
3. Centre d'Etude Spatiales de la Biosphère (CESBIO) 13 avenue du Colonel Roche F‐31400 Toulouse France
Abstract
Regional groundwater recharge and actual evapotranspiration were estimated by calibrating the one‐dimensional soil–vegetation–atmosphere transfer model Daisy against soil moisture measurements from 30 stations and at 3 depths located within a 1050 km2 subcatchment of the Danish hydrological observatory HOBE. Thirty models were constructed considering the local climate, soil texture, land use, and field practice. First estimates of the hydraulic parameters were obtained from textural data using a pedotransfer function. On the basis of sensitivity analysis, hydraulic conductivity ks and van Genuchten parameter n were found to be most sensitive, and these two parameters were therefore subject to calibration at each site using the parameter estimation code PEST. From the calibrated models, the regional variation of evapotranspiration and groundwater recharge was predicted and tested against local measurements, giving annual catchment scale values of 474 and 505 mm, respectively, for the period 2009 to 2011. These values corresponded well with comparable field observations. Various formulations of effective parameterizations were tested. Effective parameters of ks and n for forest, heath, and agriculture found by autocalibration against average soil moisture measurements of the three land cover types provided evapotranspiration and groundwater recharge estimates comparable to individual field observations (stream gauge and eddy covariance [EC] data).
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献