Enhancing Hectare‐Scale Groundwater Recharge Estimation by Integrating Data From Cosmic‐Ray Neutron Sensing Into Soil Hydrological Modeling

Author:

Scheiffele Lena M.1ORCID,Munz Matthias1ORCID,Francke Till1ORCID,Baroni Gabriele2ORCID,Oswald Sascha E.1ORCID

Affiliation:

1. Institute of Environmental Science and Geography University of Potsdam Potsdam Germany

2. Department of Agricultural and Food Sciences University of Bologna Bologna Italy

Abstract

AbstractVadose zone models, calibrated with state variables, may offer a robust approach for deriving groundwater recharge. Cosmic‐ray neutron sensing (CRNS) provides soil moisture over a large support volume (horizontal extent of hectares) and offers the opportunity to estimate water fluxes at this scale. However, the horizontal and vertical sensitivity of the method results in an inherently weighted water content, which poses a challenge for its application in soil hydrologic modeling. We systematically assess calibrating a soil hydraulic model in HYDRUS 1D at a cropped field site. Calibration was performed using different field‐scale soil moisture time series and the ability of the model to represent root zone soil moisture and derive groundwater recharge was assessed. As our benchmark, we used a distributed point sensor network from within the footprint of the CRNS. Models calibrated on CRNS data or combinations of CRNS with deeper point measurements resulted in cumulative groundwater recharge comparable to the benchmark. While models based exclusively on CRNS data do not represent the root zone soil moisture dynamics adequately, combining CRNS with profile soil moisture overcomes this limitation. Models calibrated on CRNS data also perform well in timing the downward flux compared to an independent estimate based on soil water tension measurements. However, the latter provides quantitative groundwater recharge estimates spanning a wide range of values, including unrealistic highs exceeding local annual precipitation. Conversely, modeled groundwater recharge based on the distributed sensor network or on CRNS resulted in estimates ranging between 30% and 40% of annual precipitation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3