Calibrating a Transformer-Based Model’s Confidence on Community-Engaged Research Studies: Decision Support Evaluation Study (Preprint)

Author:

Ferrell BrianORCID,Raskin Sarah EORCID,Zimmerman Emily BORCID

Abstract

BACKGROUND

Deep learning offers great benefits in classification tasks such as medical imaging diagnostics or stock trading, especially when compared with human-level performances, and can be a viable option for classifying distinct levels within community-engaged research (CEnR). CEnR is a collaborative approach between academics and community partners with the aim of conducting research that is relevant to community needs while incorporating diverse forms of expertise. In the field of deep learning and artificial intelligence (AI), training multiple models to obtain the highest validation accuracy is common practice; however, it can overfit toward that specific data set and not generalize well to a real-world population, which creates issues of bias and potentially dangerous algorithmic decisions. Consequently, if we plan on automating human decision-making, there is a need for creating techniques and exhaustive evaluative processes for these powerful unexplainable models to ensure that we do not incorporate and blindly trust poor AI models to make real-world decisions.

OBJECTIVE

We aimed to conduct an evaluation study to see whether our most accurate transformer-based models derived from previous studies could emulate our own classification spectrum for tracking CEnR studies as well as whether the use of calibrated confidence scores was meaningful.

METHODS

We compared the results from 3 domain experts, who classified a sample of 45 studies derived from our university’s institutional review board database, with those from 3 previously trained transformer-based models, as well as investigated whether calibrated confidence scores can be a viable technique for using AI in a support role for complex decision-making systems.

RESULTS

Our findings reveal that certain models exhibit an overestimation of their performance through high confidence scores, despite not achieving the highest validation accuracy.

CONCLUSIONS

Future studies should be conducted with larger sample sizes to generalize the results more effectively. Although our study addresses the concerns of bias and overfitting in deep learning models, there is a need to further explore methods that allow domain experts to <i>trust</i> our models more. The use of a calibrated confidence score can be a misleading metric when determining our AI model’s level of competency.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3