Trend and Co-occurrence Network of COVID-19 Symptoms From Large-Scale Social Media Data: Infoveillance Study (Preprint)

Author:

Wu JiagengORCID,Wang LuminORCID,Hua YiningORCID,Li MinghuiORCID,Zhou LiORCID,Bates David WORCID,Yang JieORCID

Abstract

BACKGROUND

For an emergent pandemic, such as COVID-19, the statistics of symptoms based on hospital data may be biased or delayed due to the high proportion of asymptomatic or mild-symptom infections that are not recorded in hospitals. Meanwhile, the difficulty in accessing large-scale clinical data also limits many researchers from conducting timely research.

OBJECTIVE

Given the wide coverage and promptness of social media, this study aimed to present an efficient workflow to track and visualize the dynamic characteristics and co-occurrence of symptoms for the COVID-19 pandemic from large-scale and long-term social media data.

METHODS

This retrospective study included 471,553,966 COVID-19–related tweets from February 1, 2020, to April 30, 2022. We curated a hierarchical symptom lexicon for social media containing 10 affected organs/systems, 257 symptoms, and 1808 synonyms. The dynamic characteristics of COVID-19 symptoms over time were analyzed from the perspectives of weekly new cases, overall distribution, and temporal prevalence of reported symptoms. The symptom evolutions between virus strains (Delta and Omicron) were investigated by comparing the symptom prevalence during their dominant periods. A co-occurrence symptom network was developed and visualized to investigate inner relationships among symptoms and affected body systems.

RESULTS

This study identified 201 COVID-19 symptoms and grouped them into 10 affected body systems. There was a significant correlation between the weekly quantity of self-reported symptoms and new COVID-19 infections (Pearson correlation coefficient=0.8528; <i>P</i>&lt;.001). We also observed a 1-week leading trend (Pearson correlation coefficient=0.8802; <i>P</i>&lt;.001) between them. The frequency of symptoms showed dynamic changes as the pandemic progressed, from typical respiratory symptoms in the early stage to more musculoskeletal and nervous symptoms in the later stages. We identified the difference in symptoms between the Delta and Omicron periods. There were fewer severe symptoms (coma and dyspnea), more flu-like symptoms (throat pain and nasal congestion), and fewer typical COVID symptoms (anosmia and taste altered) in the Omicron period than in the Delta period (all <i>P</i>&lt;.001). Network analysis revealed co-occurrences among symptoms and systems corresponding to specific disease progressions, including palpitations (cardiovascular) and dyspnea (respiratory), and alopecia (musculoskeletal) and impotence (reproductive).

CONCLUSIONS

This study identified more and milder COVID-19 symptoms than clinical research and characterized the dynamic symptom evolution based on 400 million tweets over 27 months. The symptom network revealed potential comorbidity risk and prognostic disease progression. These findings demonstrate that the cooperation of social media and a well-designed workflow can depict a holistic picture of pandemic symptoms to complement clinical studies.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3