Review—Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors

Author:

Pearton S. J.ORCID,Aitkaliyeva Assel,Xian Minghan,Ren Fan,Khachatrian Ani,Ildefonso AdrianORCID,Islam Zahabul,Jafar Rasel Md Abu,Haque Aman,Polyakov A. Y.ORCID,Kim JihyunORCID

Abstract

The wide bandgap semiconductors SiC and GaN are already commercialized as power devices that are used in the automotive, wireless, and industrial power markets, but their adoption into space and avionic applications is hindered by their susceptibility to permanent degradation and catastrophic failure from heavy-ion exposure. Efforts to space-qualify these wide bandgap power devices have revealed that they are susceptible to damage from the high-energy, heavy-ion space radiation environment (galactic cosmic rays) that cannot be shielded. In space-simulated conditions, GaN and SiC transistors have shown failure susceptibility at ∼50% of their nominal rated voltage. Similarly, SiC transistors are susceptible to radiation damage-induced degradation or failure under heavy-ion single-event effects testing conditions, reducing their utility in the space galactic cosmic ray environment. In SiC-based Schottky diodes, catastrophic single-event burnout (SEB) and other single-event effects (SEE) have been observed at ∼40% of the rated operating voltage, as well as an unacceptable degradation in leakage current at ∼20% of the rated operating voltage. The ultra-wide bandgap semiconductors Ga2O3, diamond and BN are also being explored for their higher power and higher operating temperature capabilities in power electronics and for solar-blind UV detectors. Ga2O3 appears to be more resistant to displacement damage than GaN and SiC, as expected from a consideration of their average bond strengths. Diamond, a highly radiation-resistant material, is considered a nearly ideal material for radiation detection, particularly in high-energy physics applications. The response of diamond to radiation exposure depends strongly on the nature of the growth (natural vs chemical vapor deposition), but overall, diamond is radiation hard up to several MGy of photons and electrons, up to 1015 (neutrons and high energetic protons) cm−2 and >1015 pions cm−2. BN is also radiation-hard to high proton and neutron doses, but h-BN undergoes a transition from sp2 to sp3 hybridization as a consequence of the neutron induced damage with formation of c-BN. Much more basic research is needed on the response of both the wide and ultra-wide bandgap semiconductors to radiation, especially single event effects.

Funder

Russian Ministry of Science and Education

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation Korea

Defense Threat Reduction Agency

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3