Down-Regulation of Lncrna MALAT1 Attenuates Neuronal Cell Death Through Suppressing Beclin1-Dependent Autophagy by Regulating Mir-30a in Cerebral Ischemic Stroke

Author:

Guo Dong,Ma Ji,Yan Lei,Li Tengfei,Li Zhiguo,Han Xinwei,Shui Shaofeng

Abstract

Background/Aims: LncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported to be highly expressed in an in vitro mimic of ischemic stroke conditions. However, the exact biological role of MALAT1 and its underlying mechanism in ischemic stroke remain to be elucidated. Methods: The roles of MALAT1 and miR-30a on cell death and infarct volume and autophagy were evaluated in experimental ischemic stroke. The relationships between miR-30a and MALAT1, Beclin1 were confirmed by luciferase reporter assay. The autophagy inhibitor 3-methyadenine (3-MA) was used to examine the impact of autophagy on ischemic injury. Results: We found that MALAT1, along with the levels of conversion from autophagy-related protein microtubule-associated protein light chain 3-I (LC3-I) to LC3-phosphatidylethanolamine conjugate (LC3-II), as well as Beclin1 were up-regulated and miR-30a was down-regulated in cerebral cortex neurons after oxygen-glucose deprivation (OGD) and mouse brain cortex after middle cerebral artery occlusion-reperfusion (MCAO). Down-regulation of MALAT1 suppressed ischemic injury and autophagy in vitro and in vivo. Furthermore, MALAT1 may serve as a molecular sponge for miR-30a and negatively regulate its expression. In addition, MALAT1 overturned the inhibitory effect of miR-30a on ischemic injury and autophagy in vitro and in vivo, which might be involved in the derepression of Beclin1, a direct target of miR-30a. Mechanistic analyses further revealed that autophagy inhibitor 3-methyadenine (3-MA) markedly suppressed OGD-induced neuronal cell death and MCAO-induced ischemic brain infarction. Conclusion: Taken together, our study first revealed that down-regulation of MALAT1 attenuated neuronal cell death through suppressing Beclin1-dependent autophagy by regulating miR-30a expression in cerebral ischemic stroke. Besides, our study demonstrated a novel lncRNA-miRNA-mRNA regulatory network that is MALAT1-miR-30a-Beclin1 in ischemic stroke, contributing to a better understanding the pathogenesis and progression of ischemic stroke.

Publisher

S. Karger AG

Subject

Physiology

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3