A Study of the Impacts of Vertical Diffusion on the Structure and Intensity of the Tropical Cyclones Using the High-Resolution HWRF System

Author:

Gopalakrishnan Sundararaman G.1,Marks Frank1,Zhang Jun A.2,Zhang Xuejin2,Bao Jian-Wen3,Tallapragada Vijay4

Affiliation:

1. NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

2. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

3. NOAA/Earth System Research Laboratory, Boulder, Colorado

4. NOAA/National Centers for Environmental Prediction/Environmental Modeling Center, Washington, D.C.

Abstract

Abstract The Hurricane Weather Research and Forecasting (HWRF) system was used in an idealized framework to gain a fundamental understanding of the variability in tropical cyclone (TC) structure and intensity prediction that may arise due to vertical diffusion. The modeling system uses the Medium-Range Forecast parameterization scheme. Flight-level data collected by a NOAA WP-3D research aircraft during the eyewall penetration of category 5 Hurricane Hugo (1989) at an altitude of about 450–500 m and Hurricane Allen (1980) were used as the basis to best match the modeled eddy diffusivities with wind speed. While reduction of the eddy diffusivity to a quarter of its original value produced the best match with the observations, such a reduction revealed a significant decrease in the height of the inflow layer as well which, in turn, drastically affected the size and intensity changes in the modeled TC. The cross-isobaric flow (inflow) was observed to be stronger with the decrease in the inflow depth. Stronger inflow not only increased the spin of the storm, enhancing the generalized Coriolis term in the equations of motion for tangential velocity, but also resulted in enhanced equivalent potential temperature in the boundary layer, a stronger and warmer core, and, subsequently, a stronger storm. More importantly, rapid acceleration of the inflow not only produced a stronger outflow at the top of the inflow layer, more consistent with observations, but also a smaller inner core that was less than half the size of the original.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3