Impact of Physics Representations in the HWRFX on Simulated Hurricane Structure and Pressure–Wind Relationships

Author:

Bao J.-W.1,Gopalakrishnan S. G.2,Michelson S. A.3,Marks F. D.2,Montgomery M. T.4

Affiliation:

1. NOAA/ESRL, Boulder, Colorado

2. NOAA/AOML, Miami, Florida

3. NOAA/ESRL, and CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

4. NOAA/AOML, Miami, Florida, and Naval Postgraduate School, Monterey, California

Abstract

Abstract A series of idealized experiments with the NOAA Experimental Hurricane Weather Research and Forecasting Model (HWRFX) are performed to examine the sensitivity of idealized tropical cyclone (TC) intensification to various parameterization schemes of the boundary layer (BL), subgrid convection, cloud microphysics, and radiation. Results from all the experiments are compared in terms of the maximum surface 10-m wind (VMAX) and minimum sea level pressure (PMIN)—operational metrics of TC intensity—as well as the azimuthally averaged temporal and spatial structure of the tangential wind and its material acceleration. The conventional metrics of TC intensity (VMAX and PMIN) are found to be insufficient to reveal the sensitivity of the simulated TC to variations in model physics. Comparisons of the sensitivity runs indicate that (i) different boundary layer physics parameterization schemes for vertical subgrid turbulence mixing lead to differences not only in the intensity evolution in terms of VMAX and PMIN, but also in the structural characteristics of the simulated tropical cyclone; (ii) the surface drag coefficient is a key parameter that controls the VMAX–PMIN relationship near the surface; and (iii) different microphysics and subgrid convection parameterization schemes, because of their different realizations of diabatic heating distribution, lead to significant variations in the vortex structure. The quantitative aspects of these results indicate that the current uncertainties in the BL mixing, surface drag, and microphysics parameterization schemes have comparable impacts on the intensity and structure of simulated TCs. The results also indicate that there is a need to include structural parameters in the HWRFX evaluation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3