Summertime Potential Evapotranspiration in Eastern Washington State

Author:

Bond Nicholas A.1,Bumbaco Karin A.1

Affiliation:

1. Office of the Washington State Climatologist, Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington

Abstract

AbstractThe demands for water in agricultural regions depend on the rate of evapotranspiration (ET). Daily records of potential ET (pET) are available from the late 1980s through the present for five stations in eastern Washington State (George, Harrah, LeGrow, Lind, and Odessa) through the Pacific Northwest Cooperative Agricultural Weather Network (AgriMet) under the auspices of the Bureau of Reclamation. These records reveal a secular increase in the summer (June–August) mean pET over the period 1987–2014. This increase can be attributed largely to an increase in solar irradiance of 20–30 W m−2 over the same period. The seasonal mean solar irradiance accounts for approximately 35%–50% of the variance in the interannual variations in seasonal mean pET at the individual stations and for approximately 60% of the variance from a five-station average perspective. The period of analysis includes a mean increase of temperature of about 0.3°C (10 yr)−1, and the variability in temperature relates more to the year-to-year fluctuations in pET than to the overall increase in pET. The time series of surface relative humidity and wind speed exhibit only minor trends. Daily and seasonal mean data for 500-hPa geopotential height and other variables are used to determine aspects of the regional atmosphere associated with periods of high pET. Anomalous ridging aloft and negative anomalies in 925-hPa relative humidity tend to occur over the study area during the summers with the greatest pET. The relationships that are emerging may provide a basis for empirical downscaling of pET from global climate model projections.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3