Ecological Water Stress under Projected Climate Change across Hydroclimate Gradients in the North-Central United States

Author:

Adhikari Arjun1,Hansen Andrew J.1,Rangwala Imtiaz2

Affiliation:

1. Department of Ecology, Montana State University, Bozeman, Montana

2. North Central Climate Adaptation Science Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

AbstractWater balance influences the distribution, abundance, and diversity of plant species across Earth’s terrestrial system. In this study, we examine changes in the water balance and, consequently, the dryland extent across eight ecoregions of the north-central United States by quantifying changes in the growing season (May–September) moisture index (MI) by 2071–99, relative to 1980–2005, under three high-resolution (~4 km) downscaled climate projections (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) of high-emission scenarios (RCP8.5). We find that all ecoregions are projected to become drier as based on significant decreases in MI, except four ecoregions under CNRM-CM5, which projects relatively more moderate warming and much greater increases in precipitation relative to the other two projections. The mean projected MI across the entire study area changes by from +4% to −33%. The proportion of dryland (MI < 0.65) is projected to increase under all projections, but more significantly under the warmer and drier projections represented by CCSM4 and IPSL-CM5A-MR; these two projections also show the largest spatial increases in the arid (33%–53%) and hyperarid (135%–180%) dryland classes and the greatest decrease in the dry subhumid (from −56% to −88%) dryland class. Among the ecoregions, those in the semiarid class have the highest increase in potential evapotranspiration, those in the nondryland and dry subhumid class have the largest decrease in MI, and those in the dry subhumid class have the greatest increase in dryland extent. These changes are expected to have important implications for agriculture, ecological function, biodiversity, vegetation dynamics, and hydrological budget.

Funder

U.S. Department of the Interior

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. A comparison of statistical downscaling methods suited for wildfire applications;Abatzoglou;Int. J. Climatol.,2012

2. AdaptWest Project, 2015: Gridded current and projected climate data for North America at 1 km resolution, interpolated using the ClimateNA v5.10 software. AdaptWest, accessed 8 October 2017, https://adaptwest.databasin.org/pages/adaptwest-climatena.

3. Land use change and habitat fragmentation of wildland ecosystems of the north central United States;Adhikari;Landscape Urban Plann.,2018

4. Climate and water balance change among public, private, and tribal lands within greater wildland ecosystems across north central USA;Adhikari;Climatic Change,2019

5. Impacts of agricultural management systems on biodiversity and ecosystem services of highly simplified dryland landscapes;Adhikari;Sustainability,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3