Why Do Global Reanalyses and Land Data Assimilation Products Underestimate Snow Water Equivalent?

Author:

Broxton Patrick D.1,Zeng Xubin1,Dawson Nicholas1

Affiliation:

1. Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona

Abstract

Abstract There is a large uncertainty of snow water equivalent (SWE) in reanalyses and the Global Land Data Assimilation System (GLDAS), but the primary reason for this uncertainty remains unclear. Here several reanalysis products and GLDAS with different land models are evaluated and the primary reason for their deficiencies are identified using two high-resolution SWE datasets, including the Snow Data Assimilation System product and a new dataset for SWE and snowfall for the conterminous United States (CONUS) that is based on PRISM precipitation and temperature data and constrained with thousands of point snow observations of snowfall and snow thickness. The reanalyses and GLDAS products substantially underestimate SWE in the CONUS compared to the high-resolution SWE data. This occurs irrespective of biases in atmospheric forcing information or differences in model resolution. Furthermore, reanalysis and GLDAS products that predict more snow ablation at near-freezing temperatures have larger underestimates of SWE. Since many of the products do not assimilate information about SWE and snow thickness, this indicates a problem with the implementation of land models and pinpoints the need to improve the treatment of snow ablation in these systems, especially at near-freezing temperatures.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3