The Role of Forcing and Parameterization in Improving Snow Simulation in the Upper Colorado River Basin Using the National Water Model

Author:

Gan Yanjun1ORCID,Zhang Yu1,Kongoli Cezar2ORCID,Pan Ming3ORCID

Affiliation:

1. Department of Civil Engineering University of Texas at Arlington Arlington TX USA

2. Earth System Science Interdisciplinary Center University of Maryland, College Park College Park MD USA

3. Center for Western Weather and Water Extremes Scripps Institution of Oceanography University of California, San Diego La Jolla CA USA

Abstract

AbstractThis study assesses snow water equivalent (SWE) simulation uncertainty in the National Water Model (NWM) due to forcing and model parameterization, using data from 46 Snow Telemetry (SNOTEL) sites in the Upper Colorado River Basin (UCRB). We evaluated the newly developed Analysis of Record for Calibration (AORC) forcing data for SWE simulation and examined the impact of bias correction applied to AORC precipitation and temperature. Additionally, we investigated the sensitivity of SWE simulations to choices of physical parameterization schemes through 72 ensemble experiments. Results showed that NWM driven by AORC forcings captured the overall temporal variation of SWE but underestimated its amount. Adjusting AORC precipitation with SNOTEL observations reduced SWE root‐mean‐square error (RMSE) by 66%, adjusting temperature trimmed it by 10%, and adjusting both decreased it by 69%. Among the physical processes, the snow/soil temperature time scheme (STC) demonstrated the highest sensitivity, followed by the surface exchange coefficient for heat (SFC), snow surface albedo (ALB), and rainfall and snowfall partitioning (SNF), while the lower boundary of soil temperature (TBOT) proved to be insensitive. Further optimization of the parameterization combination resulted in a 12% SWE RMSE reduction. When combined with the bias‐corrected AORC precipitation and temperature, this optimization led to a remarkable 78% SWE RMSE reduction. Despite these enhancements, a persistent slow and late spring ablation suggests model deficiencies in snow ablation physics. The study emphasizes the critical need to enhance the accuracy of forcing data in mountainous regions and address model parameterization uncertainty through optimization efforts.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3