Probabilistic Predictions from Deterministic Atmospheric River Forecasts with Deep Learning
Author:
Affiliation:
1. a Scripps Institution of Oceanography, La Jolla, California
2. b National Center for Atmospheric Research, Boulder, Colorado
3. c University of Colorado Boulder, Boulder, Colorado
4. d Karlsruhe Institute of Technology, Karlsruhe, Germany
Abstract
Funder
U.S. Army Corps of Engineers
Department of Water Resources
Publisher
American Meteorological Society
Subject
Atmospheric Science
Link
https://journals.ametsoc.org/downloadpdf/journals/mwre/150/1/MWR-D-21-0106.1.xml
Reference186 articles.
1. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies;Guan;J. Geophys. Res. Atmos.,2015
2. Decomposition of the continuous ranked probability score for ensemble prediction systems;Hersbach;Wea. Forecasting,2000
3. “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it;Wilks;Bull. Amer. Meteor. Soc.,2016
4. Improving the analog ensemble wind speed forecasts for rare events;Alessandrini;Mon. Wea. Rev.,2019
5. Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop;Haupt;Philos. Trans. Roy. Soc. London,2021
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Physics-Based vs Data-Driven 24-Hour Probabilistic Forecasts of Precipitation for Northern Tropical Africa;Monthly Weather Review;2024-09
2. Towards replacing precipitation ensemble predictions systems using machine learning;Atmospheric Science Letters;2024-08-16
3. Comparative study of cloud evolution for rainfall nowcasting using AI-based deep learning algorithms;Journal of Hydrology;2024-08
4. Ensemble weather forecast post‐processing with a flexible probabilistic neural network approach;Quarterly Journal of the Royal Meteorological Society;2024-07-22
5. Improving CMIP6 Atmospheric River Precipitation Estimation by Cycle‐Consistent Generative Adversarial Networks;Journal of Geophysical Research: Atmospheres;2024-07-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3