Ensemble weather forecast post‐processing with a flexible probabilistic neural network approach

Author:

Mlakar Peter12ORCID,Merše Janko2,Faganeli Pucer Jana1

Affiliation:

1. University of Ljubljana Faculty of Computer and Information Science Slovenia

2. Section for Meteorological Hydrological and Oceanographic Products, Slovenian Environment Agency Ljubljana Slovenia

Abstract

AbstractEnsemble forecast post‐processing is a necessary step in producing accurate probabilistic forecasts. Many post‐processing methods operate by estimating the parameters of a predetermined probability distribution; others operate on a per‐lead‐time or per‐station basis. All of the aforementioned factors either limit the expressive power of the methods in question or require additional models, one for each lead time and station. We propose a novel, neural network‐based method that produces forecasts for all lead times jointly and requires a single model for all stations. We incorporate normalizing spline flows as flexible parametric distribution estimators, which enables us to model complex forecast distributions. Furthermore, we demonstrate the effectiveness of our method in the context of the EUPPBench benchmark, where we conduct 2‐m temperature forecast post‐processing for stations in a subregion of Europe. We show that our novel method exhibits state‐of‐the‐art performance on the benchmark, improving upon other well‐performing entries. Additionally, by providing a detailed comparison of three variants of our novel post‐processing method, we elucidate the reasons why our method outperforms per‐lead‐time‐based approaches and approaches with distributional assumptions.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Wiley

Reference45 articles.

1. Ambrogioni L. Güçlü U. MAJv G.&Maris E.(2017)The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables.

2. The quiet revolution of numerical weather prediction

3. Constrained Quantile Regression Splines for Ensemble Postprocessing

4. Ensemble Postprocessing Using Quantile Function Regression Based on Neural Networks and Bernstein Polynomials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3