Dietary Geranylgeranyl Pyrophosphate Counteracts the Benefits of Statin Therapy in Experimental Pulmonary Hypertension

Author:

Zhu Liping12,Liu Fangbo12,Hao Qiang12,Feng Tian12,Chen Zeshuai12,Luo Shengquan12,Xiao Rui12,Sun Mengxiang12,Zhang Ting12,Fan Xiaohang12,Zeng Xianqin12,He Jianguo3,Yuan Ping4,Liu Jinming4,Ruiz Matthieu56,Dupuis Jocelyn76ORCID,Hu Qinghua12ORCID

Affiliation:

1. Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

2. Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

3. State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.H.).

4. Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.).

5. Departments of Nutrition (M.R.), Université de Montréal, Canada.

6. Montreal Heart Institute Research Center, Canada (M.R., J.D.).

7. Medicine (J.D.), Université de Montréal, Canada.

Abstract

Background: The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown. Methods: We developed a sensitive high-pressure liquid chromatography technique to quantify dietary GGPP and conducted proteomics, qualitative real-time polymerase chain reaction screening, and Western blot to determine signaling cascades, gene expression, protein–protein interaction, and protein membrane trafficking in wild-type and transgenic rats. Results: GGPP contents were highly variable depending on food source that differentially regulated blood GGPP levels in rats. Diets containing intermediate and high GGPP reduced or abolished the effects of statins in rats with hypoxia- and monocrotaline-induced pulmonary hypertension: this was rescuable by methyl-allylthiosulfinate and methyl-allylthiosulfinate–rich garlic extracts. In human pulmonary artery smooth muscle cells treated with statins, hypoxia activated RhoA in an extracellular GGPP-dependent manner. Hypoxia-induced ROCK2 (Rho associated coiled-coil containing protein kinase 2)/Rab10 (Ras-related protein rab-10) signaling was prevented by statin and recovered by exogenous GGPP. The hypoxia-activated RhoA/ROCK2 pathway in rat and human pulmonary artery smooth muscle cells upregulated the expression of Ca 2+ -sensing receptor (CaSR) and HIMF (hypoxia-induced mitogenic factor), a mechanism attenuated by statin treatment and regained with exogenous GGPP. Rab10 knockdown almost abrogated hypoxia-promoted CaSR membrane trafficking, a process diminished by statin and resumed by exogenous GGPP. Hypoxia-induced pulmonary hypertension was reduced in rats with CaSR mutated at the binding motif of HIMF and the interaction between dietary GGPP and statin efficiency was abolished. In humans fed a high GGPP diet, blood GGPP levels were increased. This abolished statin-lowering effects on plasma GGPP, and also on hypoxia-enhanced RhoA activity of blood monocytes that was rescued by garlic extracts. Conclusions: There is important dietary regulation of GGPP levels that interferes with the effects of statin therapy in experimental pulmonary hypertension. These observations rely on a key and central role of RhoA-ROCK2 cascade activation and Rab10-faciliated CaSR membrane trafficking with subsequent overexpression and binding of HIMF to CaSR. These findings warrant clinical investigation for the treatment of pulmonary hypertension and perhaps other diseases by combining statin with garlic-derived methyl-allylthiosulfinate or garlic extracts and thus circumventing dietary GGPP variations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3