Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart

Author:

Toma Catalin1,Pittenger Mark F.1,Cahill Kevin S.1,Byrne Barry J.1,Kessler Paul D.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine (C.T., P.D.K.), and Osiris Therapeutics, Inc (M.F.P.), Baltimore, Md; and the Powell Gene Therapy Center, Departments of Pediatrics, Molecular Genetics, and Microbiology, University of Florida School of Medicine, Gainesville, Fla (K.S.C., B.J.B.).

Abstract

Background Cellular cardiomyoplasty has been proposed as an alternative strategy for augmenting the function of diseased myocardium. We investigated the potential of human mesenchymal stem cells (hMSCs) from adult bone marrow to undergo myogenic differentiation once transplanted into the adult murine myocardium. Methods and Results A small bone marrow aspirate was taken from the iliac crest of healthy human volunteers, and hMSCs were isolated as previously described. The stem cells, labeled with lacZ , were injected into the left ventricle of CB17 SCID/ beige adult mice. At 4 days after injection, none of the engrafted hMSCs expressed myogenic markers. A limited number of cells survived past 1 week and over time morphologically resembled the surrounding host cardiomyocytes. Immunohistochemistry revealed de novo expression of desmin, β-myosin heavy chain, α-actinin, cardiac troponin T, and phospholamban at levels comparable to those of the host cardiomyocytes; sarcomeric organization of the contractile proteins was observed. In comparison, neither cardiac troponin T nor phospholamban was detected in the myotubes formed in vitro by MyoD-transduced hMSCs. Conclusions The purified hMSCs from adult bone marrow engrafted in the myocardium appeared to differentiate into cardiomyocytes. The persistence of the engrafted hMSCs and their in situ differentiation in the heart may represent the basis for using these adult stem cells for cellular cardiomyoplasty.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3