Arterial Delivery of Genetically Labelled Skeletal Myoblasts to the Murine Heart: Long-Term Survival and Phenotypic Modification of Implanted Myoblasts

Author:

Robinson Shawn W.1,Cho Peter W.2,Levitsky Hyam I.3,Olson Jean L.4,Hruban Ralph H.4,Acker Michael A.25,Kessler Paul D.1

Affiliation:

1. The Peter Belfer Cardiac Laboratory, and Departments of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

2. The Peter Belfer Cardiac Laboratory, and Departments of Medicine, Surgical Sciences, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

3. The Peter Belfer Cardiac Laboratory, and Departments of Medicine Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

4. The Peter Belfer Cardiac Laboratory, and Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

5. The Peter Belfer Cardiac Laboratory, and Departments of Division of Cardiac Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Abstract

The ability to replace damaged myocardial tissue with new striated muscle would constitute a major advance in the treatment of diseases that irreversibly injure cardiac muscle cells. The creation of focal grafts of skeletal muscle has been reported following the intramural injection of skeletal myoblasts into both normal and injured myocardium. The goals of this study were to determine whether skeletal myoblast-derived cells can be engrafted into the murine heart following arterial delivery. The murine heart was seeded with genetically labeled C2C12 myoblasts introduced into the arterial circulation of the heart via a transventricular injection. A transventricular injection provided access to the coronary and systemic circulations. Implanted cells were characterized using histochemical staining for β-galactosidase, immunofluorescent staining for muscle-specific antigens, and electron microscopy. Initially the injected cells were observed entrapped in myocardial capillaries. One week after injection myoblasts were present in the myocardial interstitium and were largely absent from the myocardial capillary bed. Implanted cells underwent myogenic development, characterized by the expression of a fast-twitch skeletal muscle sarco-endoplasmic reticulum calcium ATPase (SERCA1) and formation of myofilaments. Four months following injection myoblast-derived cells began to express a slow-twitch/cardiac protein, phospholamban, that is normally not expressed by C2C12 cells in vitro. Most surprisingly, regions of close apposition between LacZ labeled cells and native cardiomyocytes contained structures that resembled desmosomes, fascia adherens junctions, and gap junctions. The cardiac gap junction protein, connexin43, was localized to some of the interfaces between implanted cells and cardiomyocytes. Collectively, these findings suggest that arterially delivered myoblasts can be engrafted into the heart, and that prolonged residence in the myocardium may alter the phenotype of these skeletal muscle-derived cells. Further studies are necessary to determine whether arterial delivery of skeletal myoblasts can be developed as treatment for myocardial dysfunction.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3