Inhibition of GSK3β by Postconditioning Is Required to Prevent Opening of the Mitochondrial Permeability Transition Pore During Reperfusion

Author:

Gomez Ludovic1,Paillard Mélanie1,Thibault Hélène1,Derumeaux Geneviève1,Ovize Michel1

Affiliation:

1. From INSERM U886, Université Claude Bernard Lyon (L.G., M.P., H.T., G.D., M.O.), and Hôpital Louis Pradel, Hospices Civils de Lyon (H.T., G.D., M.O.), Lyon, France.

Abstract

Background— Opening of the mitochondrial permeability transition pore (mPTP) is a crucial event in lethal reperfusion injury. Phosphorylation (inhibition) of glycogen synthase kinase-3β (GSK3β) has been involved in cardioprotection. We investigated whether phosphorylated GSK3β may protect the heart via the inhibition of mPTP opening during postconditioning. Methods and Results— Wild-type and transgenic GSK3β-S9A mice (the cardiac GSK3β activity of which cannot be inactivated) underwent 60 minutes of ischemia and 24 hours of reperfusion. At reperfusion, wild-type and GSK3β-S9A mice received no intervention (control), postconditioning (3 cycles of 1 minute ischemia and 1 minute of reperfusion), the mPTP inhibitor cyclosporine A (CsA; 10 mg/kg IV), or the GSK3β inhibitor SB216763 (SB21; 70 μg/kg IV). Infarct size was assessed by triphenyltetrazolium chloride staining. The resistance of the mPTP to opening after Ca 2+ loading was assessed by spectrofluorometry on mitochondria isolated from the area at risk. In wild-type mice, infarct size was significantly reduced by postconditioning, CsA, and SB21, averaging 39±2%, 35±5%, and 37±4%, respectively, versus 58±5% of the area at risk in control mice ( P <0.05). In GSK3β-S9A mice, only CsA, but not postconditioning or SB21, reduced infarct size. Postconditioning, CsA, and SB21 all improved the resistance of the mPTP in wild-type mice, but only CsA did so in GSK3β-S9A mice. Conclusion— These results suggest that S9-phosphorylation of GSK3β is required for postconditioning and likely acts by inhibiting the opening of the mitochondrial permeability transition pore.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3