Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice

Author:

Gomez Ludovic,Thibault Hélène,Gharib Adbdallah,Dumont Jean-Maurice,Vuagniaux Grégoire,Scalfaro Pietro,Derumeaux Geneviève,Ovize Michel

Abstract

Inhibition of mitochondrial permeability transition pore (mPTP) opening by cyclosporin A or ischemic postconditioning attenuates lethal reperfusion injury. Its impact on major post-myocardial infarction events, including worsening of left ventricular (LV) function and death, remains unknown. We sought to determine whether pharmacological or postconditioning-induced inhibition of mPTP opening might improve functional recovery and survival following myocardial infarction in mice. Anesthetized mice underwent 25 min of ischemia and 24 h ( protocol 1) or 30 days ( protocol 2) of reperfusion. At reperfusion, they received no intervention (control), postconditioning (3 cycles of 1 min ischemia-1 min reperfusion), or intravenous injection of the mPTP inhibitor Debio-025 (10 mg/kg). At 24 h of reperfusion, mitochondria were isolated from the region at risk for assessment of the Ca2+ retention capacity (CRC). Infarct size was measured by triphenyltetrazolium chloride staining. At 30 days of reperfusion, mortality and LV contractile function (echocardiography) were evaluated. Postconditioning and Debio-025 significantly improved Ca2+ retention capacity (132 ± 13 and 153 ± 31 vs. 53 ± 16 nmol Ca2+/mg protein in control) and reduced infarct size to 35 ± 4 and 32 ± 7% of area at risk vs. 61 ± 6% in control ( P < 0.05). At 30 days, ejection fraction averaged 74 ± 6 and 77 ± 6% in postconditioned and Debio-025 groups, respectively, vs. 62 ± 12% in the control group ( P < 0.05). At 30 days, survival was improved from 58% in the control group to 92 and 89% in postconditioned and Debio-025 groups, respectively. Inhibition of mitochondrial permeability transition at reperfusion improves functional recovery and mortality in mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3