Lepr db Diabetic Mouse Bone Marrow Cells Inhibit Skin Wound Vascularization but Promote Wound Healing

Author:

Stepanovic Vesna1,Awad Ola1,Jiao Chunhua1,Dunnwald Martine1,Schatteman Gina C.1

Affiliation:

1. From the Departments of Exercise Science (V.S., O.A., C.J., G.C.S.) and Dermatology (M.D.), University of Iowa, Iowa City.

Abstract

Bone marrow stem cells participate in tissue repair processes and may have roles in skin wound repair. Diabetes is characterized by delayed and poor wound healing, and type 1 diabetes seems to lead to stem cell dysfunction. Hence, stem cell dysfunction could contribute to poor healing, and stem cell–based therapies may be efficacious in diabetic wounds. We investigated the potential of exogenous stem cells to promote skin healing and possible effects of type 2 diabetes on stem cell function. Mouse bone marrow cells from nondiabetic and diabetic mice were enriched for putative stem cells and injected under skin wounds of nondiabetic or type 2 diabetic Lepr db mice. Using histology and morphometry, vascularization and healing in treated and untreated mice were analyzed. We anticipated a correlation between improved wound healing and vascularization, because therapies that increase tissue vascularization tend to enhance wound healing. Our data indicate that exogenous nondiabetic bone marrow–derived cells increase vascularization and improve wound healing in Lepr db mice but have little effect on nondiabetic controls. In contrast, Lepr db -derived marrow cells inhibit vascularization but promote wound healing in Lepr db mice. Thus, adult stem cell function may be impaired by type 2 diabetes; the ability to promote vascularization and wound healing are distinct functions of bone marrow cells; and neovascularization and wound healing may not be tightly coupled. Additionally, we observed little incorporation of injected cells into wound structures, suggesting that improved healing is mediated through mechanisms other than direct differentiation and incorporation of the cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3