MicroRNA Let-7i Negatively Regulates Cardiac Inflammation and Fibrosis

Author:

Wang Xia1,Wang Hong-Xia1,Li Yu-Lin1,Zhang Cong-Cong1,Zhou Chun-Yu1,Wang Lei1,Xia Yun-Long1,Du Jie1,Li Hui-Hua1

Affiliation:

1. From the Department of Pathology and Pathophysiology, School of Basic Medical Sciences (X.W., H.-X.W., C.-Y.Z., H.-H.L.) and Beijing AnZhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases (Y.-L.L., C.-C.Z., J.D., H.-H.L.), Capital Medical University, Beijing, China; and Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University,...

Abstract

Angiotensin II stimulates fibroblast proliferation and substantially alters gene expression patterns leading to cardiac remodeling, but the mechanisms for such differences are unknown. MicroRNAs are a novel mechanism for gene expression regulation. Herein, we tested the miRNA and mRNA expression patterns in mouse heart using microarray assay and investigated their role in angiotensin II–induced cardiac remodeling. We found that let-7i was dynamically downregulated in angiotensin II–infused heart at day 3 and 7 and had the most targets that were mainly associated with cardiac inflammation and fibrosis. Overexpression or knockdown of let-7i in cultured cardiac fibroblasts demonstrated that let-7i played an inhibitory effect on the expression of its targets interleukin-6 and collagens. Furthermore, delivery of let-7i to mouse significantly inhibited angiotensin II–induced cardiac inflammation and fibrosis in a dose-dependent manner. Conversely, knockdown of let-7i aggravated this effect. Together, our results clearly demonstrate that let-7i acts as a novel negative regulator of angiotensin II–induced cardiac inflammation and fibrosis by suppressing the expression of interleukin-6 and multiple collagens in the heart and may represent a new potential therapeutic target for treating hypertensive cardiac fibrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3