A time-series minimally invasive transverse aortic constriction mouse model for pressure overload-induced cardiac remodeling and heart failure

Author:

Wang Xia,Zhu Xinxin,Shi Li,Wang Jingjing,Xu Qing,Yu Baoqi,Qu Aijuan

Abstract

Transverse aortic constriction (TAC) is a widely-used animal model for pressure overload-induced cardiac hypertrophy and heart failure (HF). The severity of TAC-induced adverse cardiac remodeling is correlated to the degree and duration of aorta constriction. Most studies of TAC are performed with a 27-gauge needle, which is easy to cause a tremendous left ventricular overload and leads to a rapid HF, but it is accompanied by higher mortality attributed to tighter aortic arch constriction. However, a few studies are focusing on the phenotypes of TAC applied with a 25-gauge needle, which produces a mild overload to induce cardiac remodeling and has low post-operation mortality. Furthermore, the specific timeline of HF induced by TAC applied with a 25-gauge needle in C57BL/6 J mice remains unclear. In this study, C57BL/6 J mice were randomly subjected to TAC with a 25-gauge needle or sham surgery. Echocardiography, gross morphology, and histopathology were applied to evaluate time-series phenotypes in the heart after 2, 4, 6, 8, and 12 weeks. The survival rate of mice after TAC was more than 98%. All mice subjected to TAC maintained compensated cardiac remodeling during the first two weeks and began to exhibit heart failure characteristics after 4 weeks upon TAC. At 8 weeks post-TAC, the mice showed severe cardiac dysfunction, hypertrophy, and cardiac fibrosis compared to sham mice. Moreover, the mice raised a severe dilated HF at 12 weeks. This study provides an optimized method of the mild overload TAC-induced cardiac remodeling from the compensatory period to decompensatory HF in C57BL/6 J mice.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Beijing Postdoctoral Research Foundation

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3