GSDMD (Gasdermin D) Mediates Pathological Cardiac Hypertrophy and Generates a Feed-Forward Amplification Cascade via Mitochondria-STING (Stimulator of Interferon Genes) Axis

Author:

Han Jibo1,Dai Shanshan2,Zhong Lingfeng3,Shi Xiaowen1,Fan Xiaoxi3,Zhong Xin3,Lin Wante3,Su Lan3,Lin Shuang3,Han Bingjiang1,Xu Jianjiang1,Hong Xia4,Huang Weijian3ORCID,Ye Bozhi3ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., X.S., B.H., J.X.).

2. The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency (S.D.), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

3. Department of Cardiology and The Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China (L.Z., X.F., X.Z., W.L., L.S., S.L., W.H., B.Y.).

4. Department of Cardiac Care Unit (X.H.), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Abstract

Background: Cardiac hypertrophy is initially an adaptive response of cardiomyocytes to neurohumoral or hemodynamic stimuli. Evidence indicates that Ang II (angiotensin II) or pressure overload causes GSDMD (gasdermin D) activation in cardiomyocytes and myocardial tissues. However, the direct impact of GSDMD on cardiac hypertrophy and its underlying mechanisms are not fully understood. Methods and Results: In this study, we examined the aberrant activation of GSDMD in mouse and human hypertrophic myocardia, and the results showed that GSDMD deficiency reduced Ang II or pressure overload–induced cardiac hypertrophy, dysfunction, and associated cardiomyocyte pyroptosis in mice. Mechanistically, Ang II–mediated GSDMD cleavage caused mitochondrial dysfunction upstream of STING (stimulator of interferon genes) activation in vivo and in vitro. Activation of STING, in turn, potentiated GSDMD-mediated cardiac hypertrophy. Moreover, deficiency of both GSDMD and STING suppressed cardiac hypertrophy in cardiac-specific GSDMD-overexpressing mice. Conclusions: Based on these findings, we propose a mechanism by which GSDMD generates a self-amplifying, positive feed-forward loop with the mitochondria-STING axis. This finding points to the prospects of GSDMD as a key therapeutic target for hypertrophy-associated heart diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3