Interleukin-10 From Transplanted Bone Marrow Mononuclear Cells Contributes to Cardiac Protection After Myocardial Infarction

Author:

Burchfield Jana S.1,Iwasaki Masayoshi1,Koyanagi Masamichi1,Urbich Carmen1,Rosenthal Nadia1,Zeiher Andreas M.1,Dimmeler Stefanie1

Affiliation:

1. From the Department of Molecular Cardiology, Internal Medicine III, J. W. Goethe University, Frankfurt, Germany (J.S.B., M.I., M.K., C.U., A.M.Z., S.D.); and the European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Rome, Italy (N.R.).

Abstract

Bone marrow mononuclear cells (BM-MNCs) have successfully been used as a therapy for the improvement of left ventricular (LV) function after myocardial infarction (MI). It has been suggested that paracrine factors from BM-MNCs may be a key mechanism mediating cardiac protection. We previously performed microarray analysis and found that the pleiotropic cytokine interleukin (IL)-10 was highly upregulated in human progenitor cells in comparison with adult endothelial cells and CD14 + cells. Moreover, BM-MNCs secrete significant amounts of IL-10, and IL-10 could be detected from progenitor cells transplanted in infarcted mouse hearts. Specifically, intramyocardial injection of wild-type BM-MNCs led to a significant decrease in LV end-diastolic pressure (LVEDP) and LV end-systolic volume (LVESV) compared to hearts injected with either diluent or IL-10 knock-out BM-MNCs. Furthermore, intramyocardial injection of wild-type BM-MNCs led to a significant increase in stroke volume (SV) and rate of the development of pressure over time (+dP/dt) compared to hearts injected with either diluent or IL-10 knock-out BM-MNCs. The IL-10–dependent improvement provided by transplanted cells was not caused by reduced infarct size, neutrophil infiltration, or capillary density, but rather was associated with decreased T lymphocyte accumulation, reactive hypertrophy, and myocardial collagen deposition. These results suggest that BM-MNCs mediate cardiac protection after myocardial infarction and this is, at least in part, dependent on IL-10.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3