Substructuring Technique for Damage Detection Using Statistical Multi-Stage Artificial Neural Network

Author:

Bakhary Norhisham1,Hao Hong2,Deeks Andrew J.2

Affiliation:

1. Faculty of Civil Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor, Malaysia

2. School of Civil and Reseource Engineering, University of Western Australia, 6009 WA, Australia

Abstract

Artificial Neural networks (ANN) have been proven in many studies to be able to efficiently detect damage from vibration measurements. Their capability to recognize patterns and to handle non-linear and non-unique problems provides an advantage over traditional mathematical methods in correlating the vibration data to damage location and severity. However, one shortcoming of ANN is they require enormous computational effort and sometimes prohibitive time and computer memory for training a reliable ANN model, especially when structures with many degrees of freedom are involved. Therefore, in most cases, rather large elements are used in the structure model to reduce the degrees of freedom. This results in the structural vibration properties not being sensitive to small damage in a large element. As a result, direct application of ANN to detecting damage in a large civil engineering structures is not feasible. In this study, a multi-stage ANN incorporating a probability method is proposed to tackle this problem. Through this method, a structure is divided into several substructures, and each substructure is assessed independently. In each subsequent stage, only the damaged substructures are analyzed, and eventually the location and severity of small structural damage can be detected. This approach greatly reduces the computational time and the required computer memory. Moreover, a probabilistic method is also used to include the uncertainties in vibration frequencies and mode shapes in damage detection analysis. It is found that this method reduces the uncertainty effect in frequencies due to duplication error in the multi-stage ANN model and reduces the uncertainty effect in mode shapes due to the damage in other substructures. The developed approach is applied to detect damage in numerically simulated and laboratory tested concrete slab. The results demonstrate that the proposed method can detect small damage with a higher level of confidence, and the undamaged elements are less likely to be falsely detected.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3