Structural Damage Detection Using an Iterative Neural Network

Author:

Chang C. C.1,Chang T. Y. P.1,Xu Y. G.1,Wang M. L.2

Affiliation:

1. Department of Civil Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

2. Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607-7023

Abstract

A structural damage detection method based on parameter identification using an iterative neural network (NN) technique is proposed in this study. The NN model is first trained off-line using an initial training data set that consists of assumed structural parameters as outputs and their corresponding dynamic characteristics as inputs. The structural parameters are assumed with different levels of reduction to simulate various degrees of structural damage. The concept of orthogonal array is adopted to generate the representative combinations of parameter changes, which can significantly reduce the number of training data while maintaining the data completeness. A modified back-propagation learning algorithm is proposed which can overcome possible saturation of the sigmoid function and speed up the training process. The trained NN model is used to predict the structural parameters by feeding in measured dynamic characteristics. The predicted structural parameters are then used in the FE model to calculate the dynamic characteristics. The NN model would go through a retraining process if the calculated characteristics deviate from the measured ones. The identified structural parameters are then used to infer the location and the extent of structural damages. The proposed method is verified both numerically and experimentally using a clamped-clamped T beam. The results indicate that the current approach can identify both the location and the extent of damages in the beam.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3