Characterization of Full-Length Genomes of Hepatitis B Virus Quasispecies in Sera of Patients at Different Phases of Infection

Author:

Yang Zhi-Tao,Huang Su-Yuan,Chen Li,Liu Feng,Cai Xiao-Hui,Guo Yang-Fan,Wang Ming-Jie,Han Yue,Yu De-Min,Jiang Jie-Hong,Zhang Dong-Hua,Gong Qi-Ming,Zhang Guo-Qing,Zang Guo-Qing,Lu Zhong-Hua,Huang Li-Hua,Zhang Xin-Xin

Abstract

Hepatitis B virus (HBV) infection results in different clinical presentation due to different levels of immune response. Our study aimed to characterize HBV full-length genome quasispecies (QS) in patients with different phases of infection to better understand its pathogenesis. Forty treatment-naive HBV-infected patients were enrolled, including 10 cases of acute hepatitis B (AHB), 9 cases of immunotolerant (IT) HBV carriers, 11 cases of chronic hepatitis B (CHB), and 10 cases of acute-on-chronic liver failure (ACLF). The present study was conducted by clone-based sequencing. QS heterogeneity within each open reading frame was calculated. The mutation frequency index (MFI) and amino acid variations within the large HBsAg, HBcAg, and HBxAg regions were analyzed based on the different infection phases. In total, 606 HBV full-length sequences were obtained. HBV QS had higher heterogeneity in ACLF and CHB than that in IT among chronically infected individuals. AHB patients had the lower QS heterogeneity at onset than those with chronic infection. ACLF patients had the highest frequency of mutations in the core promoter and precore region. A triple mutation (A1762T/G1764A/G1896A) was observed more frequently in genotype C than in genotype B. The MFI indicated that specific peptides of the studied regions had more frequent mutations in ACLF. Furthermore, several amino acid variations, known as T- and B-cell epitopes, were potentially associated with the immunoactive phase of infection. More HBV genome mutations and deletions were observed in patients with more severe diseases, particularly in specific regions of the core and preS regions, the clinical significance and mechanism of which need to be further investigated.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3