Improvement of Crystal Solubility and Increasing Toxicity against Caenorhabditis elegans by Asparagine Substitution in Block 3 of Bacillus thuringiensis Crystal Protein Cry5Ba

Author:

Wang Fenshan,Liu Yingying,Zhang Fengjuan,Chai Lujun,Ruan Lifang,Peng Donghai,Sun Ming

Abstract

ABSTRACTThe crystal proteins fromBacillus thuringiensisare widely used for their specific toxicity against insects and nematodes. The highly conserved sequence blocks play an important role in Cry protein stability and flexibility, the basis of toxicity. The block 3 in Cry5Ba subfamily has a shorter sequence (only 12 residues) and more asparagine residues than that of others which harbor about 48 residues but only one asparagine. Based on the theoretical structure model of Cry5Ba, all three asparagines in block 3 are closely located in the interface of putative three domains, implying their probable importance in structure and function. In this study, all three asparagines in Cry5Ba2 block 3 were individually substituted with alanine by site-directed mutagenesis. The wild-type and mutant proteins were overexpressed and crystallized in acrystalliferousB. thuringiensisstrain BMB171. However, the crystals formed in one of the mutants, designated N586A, abnormally disappeared and dissolved into the culture supernatant once the sporulation cells lysed, whereas the Cry5Ba crystal and the other mutant crystals were stable. The mutant N586A crystal, isolated from sporulation cells by the ultrasonic process, was found to be easily dissolved at wide range of pH value (5.0 to 10.0). Moreover, the toxicity assays showed that the mutant N586A exhibited nearly 9-fold-higher activity against nematodes and damaged the host's intestine more efficiently than the native Cry5Ba2. These data support the presumption that the amide residue Asn586 at the interface of domains might adversely affect the protein flexibility, solubility and resultant toxicity of Cry5Ba.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3