The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects

Author:

Aronson A I1,Han E S1,McGaughey W1,Johnson D1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.

Abstract

Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3