Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia

Author:

Yao Guichun12,Le Tram2,Korn Abby M.12,Peterson Hannah N.12,Liu Mei2,Gonzalez Carlos F.12ORCID,Gill Jason J.23ORCID

Affiliation:

1. Department of Plant Pathology and Microbiology, Texas A&M University , College Station, Texas, USA

2. Center for Phage Technology, Texas A&M University , College Station, Texas, USA

3. Department of Animal Science, Texas A&M University , College Station, Texas, USA

Abstract

ABSTRACT The Burkholderia cepacia complex (Bcc) causes life-threatening respiratory tract infections in persons with cystic fibrosis (CF). In CF patients, end-stage pulmonary disease often requires lung transplantation, and pre-transplant colonization with antibiotic-resistant Burkholderia is predictive of poor post-transplant outcomes. To address this issue, phage therapy has been proposed as a treatment for these infections. However, the majority of characterized Bcc phages are temperate and are therefore difficult to use as therapeutics, and the few obligately lytic phages that have been isolated have limited host ranges. To overcome these limitations, we have produced a virulent, broad-host range derivative of the temperate Burkholderia cenocepacia phage Milagro. Phage Milagro is a 39.1-kb temperate myophage related to phage KL3 and the paradigm coliphage P2. This phage showed a phenotype of spontaneous autoplaquing on lawns of Milagro lysogens, and these autoplaques were found to be produced by virulent mutants of the parental phage Milagro. Mutations associated with virulence were identified as single base changes, insertions or deletions in the phage lysogeny control region that define potential operator sites required for lysogen maintenance. To improve phage host range, the C-terminal domain of the Milagro tail fiber was replaced with the receptor-binding domain of the broad-host range tailocin (high molecular weight bacteriocin) BceTMilo. A spontaneous virulent mutant of this engineered phage, designated Milagro vir gp20:Milo , exhibited an expanded host range over the parental phage and is able to infect multiple Bcc species including B. cenocepacia , Burkholderia multivorans , Burkholderia gladioli, Burkholderia dolosa , and Burkholderia vietnamensis . IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.

Funder

Cystic Fibrosis Foundation

National Science Foundation

John and Sally Hood Family Foundation

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3