Reversal of Azole Resistance in Candida albicans by Sulfa Antibacterial Drugs

Author:

Eldesouky Hassan E.1,Mayhoub Abdelrahman23,Hazbun Tony R.45,Seleem Mohamed N.16

Affiliation:

1. Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA

2. Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt

3. Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt

4. Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA

5. Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA

6. Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA

Abstract

ABSTRACT Invasive candidiasis presents an emerging global public health challenge due to the emergence of resistance to the frontline treatment options, such as fluconazole. Hence, the identification of other compounds capable of pairing with fluconazole and averting azole resistance would potentially prolong the clinical utility of this important group. In an effort to repurpose drugs in the field of antifungal drug discovery, we explored sulfa antibacterial drugs for the purpose of reversing azole resistance in Candida . In this study, we assembled and investigated a library of 21 sulfa antibacterial drugs for their ability to restore fluconazole sensitivity in Candida albicans . Surprisingly, the majority of assayed sulfa drugs (15 of 21) were found to exhibit synergistic relationships with fluconazole by checkerboard assay with fractional inhibitory concentration index (ΣFIC) values ranging from <0.0312 to 0.25. Remarkably, five sulfa drugs were able to reverse azole resistance in a clinically achievable range. The structure-activity relationships (SARs) of the amino benzene sulfonamide scaffold as antifungal agents were studied. We also identified the possible mechanism of the synergistic interaction of sulfa antibacterial drugs with azole antifungal drugs. Furthermore, the ability of sulfa antibacterial drugs to inhibit Candida biofilm by 40% in vitro was confirmed. In addition, the effects of sulfa-fluconazole combinations on Candida growth kinetics and efflux machinery were explored. Finally, using a Caenorhabditis elegans infection model, we demonstrated that the sulfa-fluconazole combination does possess potent antifungal activity in vivo , reducing Candida in infected worms by ∼50% compared to the control.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3