A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins

Author:

Henry M F1,Silver P A1

Affiliation:

1. Department of Biological Chemistry and Molecular Phamacology, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference73 articles.

1. Basic local alignment search tool;Altschul S.;J. Mol. Biol.,1990

2. Basegra S. J. and J. A. Steitz. 1993. The diverse world of ribonucleoproteins p. 359-381. In R. F. Gesteland and J. F. Atkins (ed.) The RNA world. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.

3. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae;Bender A.;Mol. Cell. Biol.,1991

4. Identification and characterization of the packaging proteins of core 40S hnRNP particles;Beyer A. L.;Cell,1977

5. Isolation of an active gene encoding human hnRNP protein A1; evidence for alternative splicing;Biamonti G.;J. Mol. Biol.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3